Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
Int J Mol Med ; 51(3)2023 03.
Article in English | MEDLINE | ID: mdl-36799159

ABSTRACT

Maternal engraftment is frequently present in X­linked severe combined immunodeficiency (X­SCID) patients caused by pathogenic mutations in IL2GR. However, the functional status of the engrafted cells remains unclear because of the difficulty in separately evaluating the function of the maternal and autologous cells. The present study reported an X­SCID patient with a de novo c.677C>T (p.R226H) variant in exon 5 of IL2RG, exhibiting recurrent and persistent infections from 3­months­old. After the male patient suffering recurrent pneumonia and acute hematogenous disseminated tuberculosis when 13­months­old, single­cell RNA sequencing was applied to characterize the transcriptome landscape of his bone marrow mononuclear cells (BMMNCs). A novel bioinformatic analysis strategy was designed to discriminate maternal and autologous cells at single­cell resolution. The maternal engrafted cells consisted primarily of T, NKT and NK cells and the patient presented with the coexistence of autologous cells of these cell types. When compared respectively with normal counterparts, both maternal and autologous T and NKT cells increased the transcription of some important cytokines (GZMB, PRF1 and NKG7) against infections, but decreased the expression of a number of key transcription factors (FOS, JUN, TCF7 and LEF1) related to lymphocyte activation, proliferation and differentiation. Notably, the expression of multiple inhibitory factors (LAG3, CTLA4 and HAVCR2) were substantially enhanced in the T and NKT cells of both origins. In conclusion, both maternal and autologous T and NKT cells exhibited exhaustion­like dysfunction in this X­SCID patient suffering recurrent and persistent infections.


Subject(s)
Natural Killer T-Cells , Severe Combined Immunodeficiency , X-Linked Combined Immunodeficiency Diseases , Humans , Infant , Male , Natural Killer T-Cells/pathology , Persistent Infection , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/pathology , Single-Cell Analysis , X-Linked Combined Immunodeficiency Diseases/genetics
2.
Allergol Immunopathol (Madr) ; 50(6): 32-46, 2022.
Article in English | MEDLINE | ID: mdl-36335443

ABSTRACT

INTRODUCTION AND OBJECTIVES: Omenn syndrome (OS) is a very rare type of severe combined immunodeficiencies manifested with erythroderma, eosinophilia, hepatosplenomegaly, lymph-adenopathy, and elevated level of serum IgE. OS is inherited with an autosomal recessive mode of inheritance. Germline mutations in the human RAG1 gene cause OS. MATERIALS AND METHODS: In this study, we investigated a 2-month-old boy with cough, mild anaemia, pneumonia, immunodeficiency, repeated infection, feeding difficulties, hepatomegaly, growth retardation, and heart failure. Parents of the proband were phenotypically normal. RESULTS: Karyotype analysis and chromosomal microarray analysis found no chromosomal structural abnormalities (46, XY) and no pathogenic copy number variations (CNVs) in the proband. Whole-exome sequencing identified a novel homozygous single nucleotide deletion (c.2662delC) in exon 2 of the RAG1 gene in the proband. Sanger sequencing confirmed that both the proband parents were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters and one elder brother of the proband and in the 100 ethnically matched normal healthy individuals. This novel homozygous deletion (c.2662delC) leads to the frameshift, which finally results in the formation of the truncated protein (p.Leu888Phefs*3) V(D)J recombination-activating protein 1 with 890 amino acids compared with the wildtype V(D)J recombination-activating protein 1 of 1043 amino acids. Hence, it is a loss-of-function variant. CONCLUSIONS: Our present study expands the mutational spectrum of the RAG1 gene associated with OS. We also strongly suggested the importance of whole-exome sequencing for the genetic screening of patients with OS.


Subject(s)
Severe Combined Immunodeficiency , Male , Child , Humans , Aged , Infant , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/pathology , Homozygote , Exome Sequencing , DNA Copy Number Variations , Homeodomain Proteins/genetics , Sequence Deletion , Mutation/genetics , Amino Acids/genetics
3.
Am J Surg Pathol ; 46(6): 846-853, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34985046

ABSTRACT

Mutations in the tetratricopeptide repeat domain 7A (TTC7A) gene are a rare cause of congenital enteropathy that can result in significant morbidity. TTC7A deficiency leads to disruption of the intestinal epithelium. The histopathology of this condition has been partly described in case reports and clinical studies. This manuscript describes an in-depth investigation of the pediatric gastrointestinal pathology of the largest histologically examined cohort with confirmed TTC7A mutations reported to date and, for the first time, compared the findings to age-matched and sex-matched control patients with intestinal atresia not thought to be associated with TTC7A mutations. Hematoxylin and eosin-stained slides of endoscopically obtained mucosal biopsies and surgical resection specimens from 7 patients with known TTC7A mutations were examined retrospectively. The microscopic findings were found to be on a spectrum from atresia-predominant to those with predominantly epithelial abnormalities. Several unique histopathologic characteristics were observed when compared with controls. These included neutrophilic colitis and prominent lamina propria eosinophilia throughout the gastrointestinal tract. Striking architectural abnormalities of the epithelium were observed in 4 of the 7 patients. The 5 patients with intestinal atresia demonstrated hypertrophy and disorganization of the colonic muscularis mucosae accompanied by bland spindle cell nodules within the intestinal wall. The components of the latter were further elucidated using immunohistochemistry, and we subsequently hypothesize that they represent obliterated mucosa with remnants of the muscularis mucosae. Finally, atrophic gastritis was noted in 4 patients. In conclusion, the unique histopathologic characteristics of TTC7A mutation-associated enteropathy described herein more fully describe this novel disease entity in infants who present with congenital enteropathy or enterocolitis.


Subject(s)
Germ-Line Mutation , Intestinal Atresia , Proteins , Severe Combined Immunodeficiency , Child , Humans , Infant , Intestinal Atresia/genetics , Intestinal Mucosa/pathology , Intestines/abnormalities , Proteins/genetics , Retrospective Studies , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/pathology
4.
Sci Rep ; 11(1): 23221, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853379

ABSTRACT

Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme intrinsic to the purine salvage pathway, leads to severe combined immunodeficiency (SCID) both in humans and mice. Lack of ADA results in the intracellular accumulation of toxic metabolites which have effects on T cell development and function. While untreated ADA-SCID is a fatal disorder, there are different therapeutic options available to restore ADA activity and reconstitute a functioning immune system, including enzyme replacement therapy (ERT). Administration of ERT in the form of pegylated bovine ADA (PEG-ADA) has proved a life-saving though non-curative treatment for ADA-SCID patients. However, in many patients treated with PEG-ADA, there is suboptimal immune recovery with low T and B cell numbers. Here, we show reduced thymus cellularity in ADA-SCID mice despite weekly PEG-ADA treatment. This was associated with lack of effective adenosine (Ado) detoxification in the thymus. We also show that thymocyte development in ADA-deficient thymi is arrested at the DN3-to-DN4 stage transition with thymocytes undergoing dATP-induced apoptosis rather than defective TCRß rearrangement or ß-selection. Our studies demonstrate at a detailed level that exogenous once-a-week enzyme replacement does not fully correct intra-thymic metabolic or immunological abnormalities associated with ADA deficiency.


Subject(s)
Adenosine Deaminase/therapeutic use , Agammaglobulinemia/drug therapy , Severe Combined Immunodeficiency/drug therapy , Thymocytes/pathology , Adenosine Deaminase/deficiency , Agammaglobulinemia/pathology , Animals , Cattle , Enzyme Replacement Therapy , Mice, SCID , Severe Combined Immunodeficiency/pathology , Thymocytes/drug effects , Thymocytes/metabolism
6.
Nucleic Acids Res ; 49(16): 9310-9326, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34387696

ABSTRACT

Artemis (SNM1C/DCLRE1C) is an endonuclease that plays a key role in development of B- and T-lymphocytes and in dsDNA break repair by non-homologous end-joining (NHEJ). Artemis is phosphorylated by DNA-PKcs and acts to open DNA hairpin intermediates generated during V(D)J and class-switch recombination. Artemis deficiency leads to congenital radiosensitive severe acquired immune deficiency (RS-SCID). Artemis belongs to a superfamily of nucleases containing metallo-ß-lactamase (MBL) and ß-CASP (CPSF-Artemis-SNM1-Pso2) domains. We present crystal structures of the catalytic domain of wildtype and variant forms of Artemis, including one causing RS-SCID Omenn syndrome. The catalytic domain of the Artemis has similar endonuclease activity to the phosphorylated full-length protein. Our structures help explain the predominantly endonucleolytic activity of Artemis, which contrasts with the predominantly exonuclease activity of the closely related SNM1A and SNM1B MBL fold nucleases. The structures reveal a second metal binding site in its ß-CASP domain unique to Artemis, which is amenable to inhibition by compounds including ebselen. By combining our structural data with that from a recently reported Artemis structure, we were able model the interaction of Artemis with DNA substrates. The structures, including one of Artemis with the cephalosporin ceftriaxone, will help enable the rational development of selective SNM1 nuclease inhibitors.


Subject(s)
Cell Cycle Proteins/ultrastructure , DNA-Binding Proteins/ultrastructure , Endonucleases/ultrastructure , Exodeoxyribonucleases/ultrastructure , Severe Combined Immunodeficiency/genetics , B-Lymphocytes/enzymology , Catalytic Domain/genetics , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Crystallography, X-Ray , DNA End-Joining Repair/genetics , DNA Repair/genetics , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Endonucleases/antagonists & inhibitors , Endonucleases/chemistry , Endonucleases/genetics , Enzyme Inhibitors/chemistry , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/genetics , Humans , Phosphorylation/genetics , Protein Folding , Severe Combined Immunodeficiency/enzymology , Severe Combined Immunodeficiency/pathology , T-Lymphocytes/enzymology
7.
Int J Mol Sci ; 22(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34361096

ABSTRACT

Adenosine Deaminase 2 Deficiency (DADA2) syndrome is a rare monogenic disorder prevalently linked to recessive inherited loss of function mutations in the ADA2/CECR1 gene. It consists of an immune systemic disease including autoinflammatory vasculopathies, with a frequent onset at infancy/early childhood age. DADA2 syndrome encompasses pleiotropic manifestations such as stroke, systemic vasculitis, hematologic alterations, and immunodeficiency. Although skeletal abnormalities have been reported in patients with this disease, clear information about skeletal health, with appropriate biochemical-clinical characterization/management, its evolution over time and any appropriate clinical management is still insufficient. In this paper, after a general introduction shortly reviewing the pathophysiology of Ada2 enzymatic protein, its potential role in bone health, we describe a case study of two 27 year-old DADA2 monozygotic female twins exhibiting bone mineral density and bone turnover rate abnormalities over the years of their clinical follow-up.


Subject(s)
Adenosine Deaminase/genetics , Agammaglobulinemia/pathology , Genetic Predisposition to Disease , Germ-Line Mutation , Homozygote , Intercellular Signaling Peptides and Proteins/genetics , Phenotype , Severe Combined Immunodeficiency/pathology , Adult , Agammaglobulinemia/genetics , Female , Humans , Male , Pedigree , Severe Combined Immunodeficiency/genetics
8.
J Leukoc Biol ; 110(3): 409-424, 2021 09.
Article in English | MEDLINE | ID: mdl-33988272

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is a rare autosomal recessive disease caused by loss-of-function variants in the ADA2 gene. DADA2 typically presents in childhood and is characterized by vasculopathy, stroke, inflammation, immunodeficiency, as well as hematologic manifestations. ADA2 protein is predominantly present in stimulated monocytes, dendritic cells, and macrophages. To elucidate molecular mechanisms in DADA2, CD14+ monocytes from 14 patients and 6 healthy donors were analyzed using single-cell RNA sequencing (scRNA-seq). Monocytes were purified by positive selection based on CD14 expression. Subpopulations were imputed from their transcriptomes. Based on scRNA-seq, monocytes could be classified as classical, intermediate, and nonclassical. Further, we used gene pathway analytics to interpret patterns of up- and down-regulated gene transcription. In DADA2, the frequency of nonclassical monocytes was higher compared with that of healthy donors, and M1 macrophage markers were up-regulated in patients. By comparing gene expression of each monocyte subtype between patients and healthy donors, we identified upregulated immune response pathways, including IFNα/ß and IFNγ signaling, in all monocyte subtypes. Distinctively, the TNFR2 noncanonical NF-κB pathway was up-regulated only in nonclassical monocytes. Patients' plasma showed increased IFNγ and TNFα levels. Our results suggest that elevated IFNγ activates cell signaling, leading to differentiation into M1 macrophages from monocytes and release of TNFα. Immune responses and more general response to stimuli pathways were up-regulated in DADA2 monocytes, and protein synthesis pathways were down-regulated, perhaps as stress responses. Our identification of novel aberrant immune pathways has implications for therapeutic approaches in DADA2 (registered at clinicaltrials.gov NCT00071045).


Subject(s)
Agammaglobulinemia/genetics , Agammaglobulinemia/pathology , Monocytes/pathology , Sequence Analysis, RNA , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/pathology , Single-Cell Analysis , Adenosine Deaminase/genetics , Adolescent , Adult , Agammaglobulinemia/blood , Agammaglobulinemia/enzymology , Child , Child, Preschool , Cytokines/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/genetics , Interferons/metabolism , Male , Middle Aged , Mutation/genetics , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Severe Combined Immunodeficiency/blood , Severe Combined Immunodeficiency/enzymology , Signal Transduction , Tissue Donors , Young Adult
9.
J Allergy Clin Immunol ; 148(2): 599-611, 2021 08.
Article in English | MEDLINE | ID: mdl-33662367

ABSTRACT

BACKGROUND: Homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). We studied 5 Finnish and 2 Omani patients with loss of DIAPH1 presenting with SCBMS, mitochondrial dysfunction, and immunodeficiency. OBJECTIVE: We sought to further characterize phenotypes and disease mechanisms associated with loss of DIAPH1. METHODS: Exome sequencing, genotyping and haplotype analysis, B- and T-cell phenotyping, in vitro lymphocyte stimulation assays, analyses of mitochondrial function, immunofluorescence staining for cytoskeletal proteins and mitochondria, and CRISPR-Cas9 DIAPH1 knockout in heathy donor PBMCs were used. RESULTS: Genetic analyses found all Finnish patients homozygous for a rare DIAPH1 splice-variant (NM_005219:c.684+1G>A) enriched in the Finnish population, and Omani patients homozygous for a previously described pathogenic DIAPH1 frameshift-variant (NM_005219:c.2769delT;p.F923fs). In addition to microcephaly, epilepsy, and cortical blindness characteristic to SCBMS, the patients presented with infection susceptibility due to defective lymphocyte maturation and 3 patients developed B-cell lymphoma. Patients' immunophenotype was characterized by poor lymphocyte activation and proliferation, defective B-cell maturation, and lack of naive T cells. CRISPR-Cas9 knockout of DIAPH1 in PBMCs from healthy donors replicated the T-cell activation defect. Patient-derived peripheral blood T cells exhibited impaired adhesion and inefficient microtubule-organizing center repositioning to the immunologic synapse. The clinical symptoms and laboratory tests also suggested mitochondrial dysfunction. Experiments with immortalized, patient-derived fibroblasts indicated that DIAPH1 affects the amount of complex IV of the mitochondrial respiratory chain. CONCLUSIONS: Our data demonstrate that individuals with SCBMS can have combined immune deficiency and implicate defective cytoskeletal organization and mitochondrial dysfunction in SCBMS pathogenesis.


Subject(s)
Blindness, Cortical , Formins , Microcephaly , Mitochondrial Diseases , Seizures , Severe Combined Immunodeficiency , Adult , Blindness, Cortical/genetics , Blindness, Cortical/immunology , Blindness, Cortical/pathology , Child , Child, Preschool , Female , Finland , Formins/deficiency , Formins/immunology , Humans , Male , Microcephaly/genetics , Microcephaly/immunology , Microcephaly/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/immunology , Mitochondrial Diseases/pathology , Oman , Seizures/genetics , Seizures/immunology , Seizures/pathology , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/pathology , Syndrome
10.
J Allergy Clin Immunol ; 148(2): 550-562, 2021 08.
Article in English | MEDLINE | ID: mdl-33529688

ABSTRACT

BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive inflammatory disease caused by loss-of-function mutations in both alleles of the ADA2 gene. Most patients with DADA2 exhibit systemic vasculopathy consistent with polyarteritis nodosa, but large phenotypic variability has been reported, and the pathogenesis of DADA2 remains unclear. OBJECTIVES: This study sought to assess the clinical and genetic characteristics of Japanese patients with DADA2 and to gain insight into the pathogenesis of DADA2 by multi-omics analysis. METHODS: Clinical and genetic data were collected from 8 Japanese patients with DADA2 diagnosed between 2016 and 2019. ADA2 variants in this cohort were functionally analyzed by in vitro overexpression analysis. PBMCs from 4 patients with DADA2 were subjected to transcriptome and proteome analyses. Patient samples were collected before and after introduction of anti- TNF-α therapies. Transcriptome data were compared with those of normal controls and patients with other autoinflammatory diseases. RESULTS: Five novel ADA2 variants were identified in these 8 patients and were confirmed pathogenic by in vitro analysis. Anti-TNF-α therapy controlled inflammation in all 8 patients. Transcriptome and proteome analyses showed that upregulation of type II interferon signaling was characteristic of DADA2. Network analysis identified STAT1 as a key regulator and a hub molecule in DADA2 pathogenesis, a finding supported by the hyperactivation of STAT1 in patients' monocytes and B cells after IFN-γ stimulation. CONCLUSIONS: Type II interferon signaling and STAT1 are associated with the pathogenesis of DADA2.


Subject(s)
Adenosine Deaminase/deficiency , Agammaglobulinemia/immunology , Intercellular Signaling Peptides and Proteins/deficiency , Interferon-gamma/immunology , Leukocytes, Mononuclear/immunology , STAT1 Transcription Factor/immunology , Severe Combined Immunodeficiency/immunology , Adenosine Deaminase/immunology , Adolescent , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/pathology , Asian People , Child , Child, Preschool , Female , Gene Expression Profiling , Humans , Infant , Intercellular Signaling Peptides and Proteins/immunology , Interferon-gamma/genetics , Japan , Leukocytes, Mononuclear/pathology , Male , Proteomics , STAT1 Transcription Factor/genetics , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/pathology
12.
Clin Exp Immunol ; 203(3): 448-457, 2021 03.
Article in English | MEDLINE | ID: mdl-33040328

ABSTRACT

Severe combined immunodeficiency (SCID) is fatal if not treated with immune reconstitution. In Egypt, T- B+ SCID accounts for 38·5% of SCID diagnoses. An accurate genetic diagnosis is essential for choosing appropriate treatment modalities and for offering genetic counseling to the patient's family. The objectives of this study were to describe the clinical, immunological and molecular characteristics of a cohort of twenty Egyptian patients with T- B+ SCID. The initial diagnosis (based on clinical features and flow cytometry) was followed by molecular investigation (whole-exome sequencing). All patients had the classic clinical picture for SCID, including failure to thrive (n = 20), oral candidiasis (n = 17), persistent diarrhea (n = 14), pneumonia (n = 13), napkin dermatitis (n = 10), skin rash (n = 7), otitis media (n = 3) and meningitis (n = 2). The onset of manifestations was at the age of 2·4 ± 1·6 months and diagnosis at the age of 6·7 ± ·5 months, giving a diagnostic delay of 4·3 months. JAK3 gene variants were most frequent (n = 12) with three novel variants identified, followed by IL2Rγ variants (n = 6) with two novel variants. IL7Rα and CD3ε variants were found once, with a novel variant each. T- B+ NK- SCID accounted for approximately 90% of the Egyptian patients with T- B+ SCID. Of these T- B+ NK- SCID cases, 60% were autosomal recessive syndromes caused by JAK3 mutations and 30% were X-linked syndromes. It might be useful to sequence the JAK3 gene (i.e. targeted Sanger sequencing) in all T- B+ SCID patients, especially after X-linked SCID has been ruled out. Hence, no more than 10% of T- B+ SCID patients might require next-generation for a molecular diagnosis.


Subject(s)
Exome Sequencing/methods , Janus Kinase 3/genetics , Mutation , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , T-Lymphocytes/immunology , Consanguinity , Egypt , Family Health , Female , Humans , Infant , Infant, Newborn , Interleukin Receptor Common gamma Subunit/genetics , Janus Kinase 3/deficiency , Lymphocyte Count , Male , Pedigree , Severe Combined Immunodeficiency/pathology , T-Lymphocytes/metabolism
13.
Scand J Immunol ; 93(5): e13010, 2021 May.
Article in English | MEDLINE | ID: mdl-33325540

ABSTRACT

World Health Organisation recommends the practice of BCG vaccination at birth in countries which have a high incidence of tuberculosis and/or high leprosy burden. The BCG vaccination is considered safe for a competent immune system. However, in children with weakened immune systems cause of which can be primary or secondary, the vaccine may lead to side effects which can be localized or disseminated. In this study, we report a spectrum of inborn errors of immunity (IEI) commonly referred to as primary immunodeficiency disorders (PIDs) diagnosed in a large cohort of patients presenting with complications to BCG vaccination from India. Retrospective data analysis of patients referred to ICMR- National Institute of Immunohematology (ICMR-NIIH) for IEI workup between 2007 and 2019 was done. IEI was identified in n = 52/90 (57.7%) patients presenting with BCG complications. Of these, n = 13(14.4%) patients were diagnosed with severe combined immune deficiency, n = 15(16.7%) with chronic granulomatous disease, n = 19(21.1%) with Inborn errors of IFN-γ immunity, n = 4(4.4%) with Combined immunodeficiency and n = 1(1.1%) with Leucocyte Adhesion Deficiency type1. Majority of cases with BCGosis (88%) had an underlying IEI. This study strongly highlights the need for evaluation of patients with BCG complications for underlying IEI. While disseminated BCGosis strongly predicts underlying IEI, even localized persistent adenitis may be a warning sign of underlying IEI. It is also strongly recommended to record a family history of previous sibling death prior to administration of this live vaccine and deferring live vaccine till the diagnosis of IEI is ruled out in cases with a positive family history.


Subject(s)
BCG Vaccine/adverse effects , Granulomatous Disease, Chronic/pathology , Severe Combined Immunodeficiency/pathology , Tuberculosis, Pulmonary/prevention & control , Vaccination/adverse effects , BCG Vaccine/immunology , Female , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/immunology , Humans , India , Infant , Male , Mycobacterium tuberculosis/immunology , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/immunology , Treatment Outcome
14.
Exp Neurol ; 337: 113577, 2021 03.
Article in English | MEDLINE | ID: mdl-33359474

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of brain damage in newborns. Although therapeutic hypothermia has been shown to be neuroprotective against neonatal HIE in clinical trials, its effect is not satisfactory. Cell-based therapies have attracted much attention as novel treatments for HIE. Preclinical studies on a variety of human cell transplantation methods have been performed in immunodeficient/immunosuppressed animals, such as severe combined immunodeficient (SCID) mice, which lack functional T and B lymphocytes. The detailed characteristics of neonatal HIE in SCID mice, however, have not been delineated. In preclinical studies, novel therapies for neonatal HIE should be evaluated in combination with hypothermia, which has become a standard treatment for neonatal HIE. However, the effects of hypothermia in SCID mice have not been delineated. In the present study, we compared neonatal hypoxic-ischemic (HI) brain damage in SCID mice and wild-type mice treated with or without hypothermia. Male and female mouse pups were subjected to HI insult induced by unilateral common carotid artery ligation combined with systemic hypoxia on postnatal day 12. In the first 4 h after HI insult, body temperature was maintained at 36 °C for the normothermia groups or 32 °C for the hypothermia groups. The severity of brain damage in SCID mice did not differ from that in wild-type mice based on most evaluations, i.e., cerebral blood flow, hemiparesis, muscle strength, spontaneous activity, cerebral hemispheric volume, neuropathological injury, and serum cytokine levels, although spleen weight, brain weight, leukocyte counts and the levels of some cytokines in the peripheral blood were different between genotypes. The effects of hypothermia in SCID mice were comparable to those in wild-type mice based on most evaluations. Taken together, these findings indicate that SCID mice can be used as an appropriate preclinical model for cell therapies for neonatal HIE.


Subject(s)
Brain Damage, Chronic/pathology , Brain/pathology , Hypothermia, Induced , Hypoxia-Ischemia, Brain/pathology , Severe Combined Immunodeficiency/pathology , Animals , Animals, Newborn , Body Temperature , Brain Damage, Chronic/etiology , Cerebrovascular Circulation , Cytokines/blood , Female , Hypoxia-Ischemia, Brain/psychology , Hypoxia-Ischemia, Brain/therapy , Leukocyte Count , Male , Mice , Mice, SCID , Motor Activity , Muscle Strength , Organ Size , Paresis/etiology , Paresis/physiopathology , Psychomotor Performance
15.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33231617

ABSTRACT

The T cell receptor (TCR) signaling pathway is an ensemble of numerous proteins that are crucial for an adequate immune response. Disruption of any protein involved in this pathway leads to severe immunodeficiency and unfavorable clinical outcomes. Here, we describe an infant with severe immunodeficiency who was found to have novel biallelic mutations in SLP76. SLP76 is a key protein involved in TCR signaling and in other hematopoietic pathways. Previous studies of this protein were performed using Jurkat-derived human leukemic T cell lines and SLP76-deficient mice. Our current study links this gene, for the first time, to a human immunodeficiency characterized by early-onset life-threatening infections, combined T and B cell immunodeficiency, severe neutrophil defects, and impaired platelet aggregation. Hereby, we characterized aspects of the patient's immune phenotype, modeled them with an SLP76-deficient Jurkat-derived T cell line, and rescued some consequences using ectopic expression of wild-type SLP76. Understanding human diseases due to SLP76 deficiency is helpful in explaining the mixed T cell and neutrophil defects, providing a guide for exploring human SLP76 biology.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Blood Platelets/pathology , Neutrophils/pathology , Phosphoproteins/deficiency , Severe Combined Immunodeficiency/metabolism , Severe Combined Immunodeficiency/pathology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Base Sequence , Blood Platelets/metabolism , Fatal Outcome , Humans , Infant , Infant, Newborn , Jurkat Cells , Mutation/genetics , Neutrophils/metabolism , Phenotype , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/metabolism , Severe Combined Immunodeficiency/immunology , Signal Transduction
16.
Genes Immun ; 21(5): 326-334, 2020 11.
Article in English | MEDLINE | ID: mdl-32921793

ABSTRACT

Mutations in the common gamma chain of the interleukin 2 receptor (IL2RG) or the associated downstream signaling enzyme Janus kinase 3 (JAK3) genes are typically characterized by a T cell-negative, B cell-positive, natural killer (NK) cell-negative (T-B+NK-) severe combined immunodeficiency (SCID) immune phenotype. We report clinical course, immunological, genetic and proteomic work-up of two patients with different novel mutations in the IL-2-JAK3 pathway with a rare atypical presentation of T-B+NK- SCID. Lymphocyte subpopulation revealed significant T cells lymphopenia, normal B cells, and NK cells counts (T-B+NK+SCID). Despite the presence of B cells, IgG levels were low and IgA and IgM levels were undetectable. T-cell proliferation in response to mitogens in patient 1 was very low and T-cell receptor V-beta chain repertoire in patient 2 was polyclonal. Whole-exome sequencing revealed novel mutations in both patients (patient 1-c.923delC frame-shift mutation in the IL2RG gene, patient 2-c.G172A a homozygous missense mutation in the JAK3 gene). Bioinformatic analysis of the JAK3 mutation indicated deleterious effect and 3D protein modeling located the mutation to a surface exposed alpha-helix structure. Our findings help to link between genotype and phenotype, which is a key factor for the diagnosis and treatment of SCID patients.


Subject(s)
Interleukin Receptor Common gamma Subunit/genetics , Janus Kinase 3/genetics , Phenotype , Severe Combined Immunodeficiency/genetics , Female , Humans , Infant , Janus Kinase 3/chemistry , Male , Mutation , Pedigree , Protein Conformation, alpha-Helical , Severe Combined Immunodeficiency/pathology
17.
Front Immunol ; 11: 1837, 2020.
Article in English | MEDLINE | ID: mdl-32922396

ABSTRACT

Combined Immunodeficiencies (CID) are rare congenital disorders characterized by defective T-cell development that may be associated with B- and NK-cell deficiency. They are usually due to alterations in genes expressed in hematopoietic precursors but in few cases, they are caused by impaired thymic development. Athymia was classically associated with DiGeorge Syndrome due to TBX1 gene haploinsufficiency. Other genes, implicated in thymic organogenesis include FOXN1, associated with Nude SCID syndrome, PAX1, associated with Otofaciocervical Syndrome type 2, and CHD7, one of the genes implicated in CHARGE syndrome. More recently, chromosome 2p11.2 microdeletion, causing FOXI3 haploinsufficiency, has been identified in 5 families with impaired thymus development. In this review, we will summarize the main genetic, clinical, and immunological features related to the abovementioned gene mutations. We will also focus on different therapeutic approaches to treat SCID in these patients.


Subject(s)
Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/pathology , T-Lymphocytes/immunology , Thymus Gland/abnormalities , Humans , Thymus Gland/embryology , Thymus Gland/immunology
18.
Clin Exp Immunol ; 202(1): 60-71, 2020 10.
Article in English | MEDLINE | ID: mdl-32691468

ABSTRACT

Primary immune deficiency (PID) disorders are clinically and molecularly heterogeneous diseases. T cell receptor excision circles (TRECs) and κ (kappa)-deleting excision circles (KRECs) are markers of T and B cell development, respectively. They are useful tools to assess T and B cell function and immune reconstitution and have been used for newborn screening for severe combined immunodeficiency disease (SCID) and agammaglobulinemia, respectively. Their profiles in several genetically confirmed PIDs are still lacking. The objective of this study was to determine TREC and KREC genomic profiling among various molecularly confirmed PIDs. We used real-time-quantitative polymerase chain reaction (RT-qPCR)-based triplex analysis of TRECs, KRECs and ß-actin (ACTB) in whole blood genomic DNA isolated from 108 patients with molecularly confirmed PIDs. All agammaglobulinemia patients had low KREC counts. All SCIDs and Omenn syndrome patients secondary to mutations in RAG1, RAG2, DCLRE1C and NHEJ1 had low TREC and KREC counts. JAK3-deficient patients had normal KREC and the TREC count was influenced by the type of mutation. Early-onset ADA patients had low TREC and KREC counts. Four patients with zeta-chain-associated protein kinase 70 (ZAP70) had low TREC. All purine nucleoside phosphorylase (PNP) patients had low TREC. Combined immunodeficiency (CID) patients secondary to AK2, PTPRC, CD247, DCLREC1 and STAT1 had normal TREC and KREC counts. Most patients with ataxia-telangiectasia (AT) patients had low TREC and KREC, while most DOCK8-deficient patients had low TRECs only. Two of five patients with Wiskott-Aldrich syndrome (WAS) had low TREC counts as well as one patient each with bare lymphocyte syndrome (BLS) and chronic granulomatous disease. All patients with Griscelli disease, Chediak-Higashi syndrome, hyper-immunoglobulin (Ig)M syndrome and IFNGR2 had normal TREC and KREC counts. These data suggest that, in addition to classical SCID and agammaglobulinemia, TREC/KREC assay may identify ZAP70 patients and secondary target PIDs, including dedicator of cytokinesis 8 (DOCK8) deficiency, AT and some individuals with WAS and BLS.


Subject(s)
Bone Marrow/immunology , Mutation , Severe Combined Immunodeficiency , Thymus Gland/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Bone Marrow/pathology , Female , Humans , Male , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Thymus Gland/pathology
19.
Blood ; 136(9): 1055-1066, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32518946

ABSTRACT

Molecular dissection of inborn errors of immunity can help to elucidate the nonredundant functions of individual genes. We studied 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin. All 3 showed early autologous T-cell reconstitution following allogeneic hematopoietic stem cell transplantation. By whole-exome sequencing, we identified rare homozygous germline missense or nonsense variants in a known epigenetic regulator of gene expression: ten-eleven translocation methylcytosine dioxygenase 2 (TET2). Mutated TET2 protein was absent or enzymatically defective for 5-hydroxymethylating activity, resulting in whole-blood DNA hypermethylation. Circulating T cells showed an abnormal immunophenotype including expanded double-negative, but depleted follicular helper, T-cell compartments and impaired Fas-dependent apoptosis in 2 of 3 patients. Moreover, TET2-deficient B cells showed defective class-switch recombination. The hematopoietic potential of patient-derived induced pluripotent stem cells was skewed toward the myeloid lineage. These are the first reported cases of autosomal-recessive germline TET2 deficiency in humans, causing clinically significant immunodeficiency and an autoimmune lymphoproliferative syndrome with marked predisposition to lymphoma. This disease phenotype demonstrates the broad role of TET2 within the human immune system.


Subject(s)
DNA-Binding Proteins/deficiency , Germ-Line Mutation , Loss of Function Mutation , Lymphoproliferative Disorders/genetics , Proto-Oncogene Proteins/deficiency , Severe Combined Immunodeficiency/genetics , Allografts , Apoptosis , B-Lymphocyte Subsets/pathology , Cellular Reprogramming Techniques , Codon, Nonsense , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Dioxygenases , Fatal Outcome , Female , Hematopoietic Stem Cell Transplantation , Humans , Induced Pluripotent Stem Cells/pathology , Infant, Newborn , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, T-Cell, Peripheral/genetics , Lymphoma, T-Cell, Peripheral/pathology , Male , Mutation, Missense , Neoplasms, Multiple Primary/genetics , Pedigree , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , Severe Combined Immunodeficiency/pathology , T-Lymphocyte Subsets/pathology , Exome Sequencing
20.
Clin Genet ; 98(3): 231-239, 2020 09.
Article in English | MEDLINE | ID: mdl-32441320

ABSTRACT

Primary immune deficiencies are usually attributed to genetic defects and, therefore, frequently referred to as inborn errors of immunity (IEI). We subjected the genomic DNA of 333 patients with clinical signs of IEI to next generation sequencing (NGS) analysis of 344 immunity-related genes and, in some instances, additional genetic techniques. Genetic causes of the disease were identified in 69/333 (21%) of subjects, including 11/18 (61%) of children with syndrome-associated IEIs, 45/202 (22%) of nonsyndromic patients with Jeffrey Modell Foundation (JMF) warning signs, 9/56 (16%) of subjects with periodic fever, 3/30 (10%) of cases of autoimmune cytopenia, 1/21 (5%) of patients with unusually severe infections and 0/6 (0%) of individuals with isolated elevation of IgE level. There were unusual clinical observations: twins with severe immunodeficiency carried a de novo CHARGE syndrome-associated SEMA3E c.2108C>T (p.S703L) allele; however, they lacked clinical features of CHARGE syndrome. Additionally, there were genetically proven instances of Netherton syndrome, Х-linked agammaglobulinemia, severe combined immune deficiency (SCID), IPEX and APECED syndromes, among others. Some patients carried recurrent pathogenic alleles, such as AIRE c.769C>T (p.R257*), NBN c.657del5, DCLRE1C c.103C>G (p.H35D), NLRP12 c.1054C>T (p.R352C) and c.910C>T (p.H304Y). NGS is a powerful tool for high-throughput examination of patients with malfunction of immunity.


Subject(s)
Agammaglobulinemia/genetics , CHARGE Syndrome/genetics , Genetic Diseases, X-Linked/genetics , Primary Immunodeficiency Diseases/genetics , Severe Combined Immunodeficiency/genetics , Adolescent , Agammaglobulinemia/immunology , Agammaglobulinemia/pathology , CHARGE Syndrome/immunology , CHARGE Syndrome/pathology , Child , Child, Preschool , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Endonucleases/deficiency , Endonucleases/genetics , Endonucleases/immunology , Female , Genetic Diseases, X-Linked/immunology , Genetic Diseases, X-Linked/pathology , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/pathology , Russia/epidemiology , Semaphorins/genetics , Semaphorins/immunology , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/pathology , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/immunology , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...